

 WHITEPAPER

DDD, CQRS and Event Sourc-

ing Explained

Public

AxonIQ

V1.0, 21.09.2021

 3 / 12

WHITEPAPER

DDD, CQRS and Event Sourcing Explained

AxonIQ

V1.0, 21.09.2021

VERSION CONTROL

Version Date Comment (Changes) Author

V1.0 21.09.2021 First Version AxionIQ

DOCUMENT PROPERTIES

File Name: Ergo white paper DDD, CQRS and Event Sourcing Explained.docx

4 / 12

WHITEPAPER

DDD, CQRS and Event Sourcing Explained

AxonIQ

V1.0, 21.09.2021

TABLE OF CONTENTS

1 DDD, CQRS and Event Sourcing Explained ... 5

1.1 Domain-driven design (DDD) .. 5

1.2 Event-Driven Architecture ... 5

1.3 Events and messages ... 6

1.4 Eventual Consistency .. 7

1.5 CQRS .. 7

1.6 Event sourcing ... 8

1.7 Location transparency ... 9

1.8 Events and messages ... 9

1.9 Splitting up the architecture ... 9

2 Axon .. 10

2.1 Axon Framework ... 10

2.2 Axon Server ... 10

3 References and Further Reading ... 12

 5 / 12

WHITEPAPER

DDD, CQRS and Event Sourcing Explained

AxonIQ

V1.0, 21.09.2021

1 DDD, CQRS and Event Sourcing Explained

Micro services started to get popular around 2014 although the term was coined a few years earlier.

As the interest has spread, the term has unfortunately become vaguer and today micro services is

commonly seen as just a distributed system architecture.

During the recent years both event-driven architecture (EDA) and event sourcing has drawn an in-

creasing interest, to some extent due to the interest in micro services which requires an effective way

of communicating between services. These concepts have also brought some confusion about what

they really mean and how they affect the architecture and design of applications.

In this white paper we describe the basic concepts, common misunderstandings we have seen and

how the Axon platform helps by providing the foundation for building asynchronous message-driven

systems based on the concepts of micro services, event-driven architecture and event sourcing. But

using the same basic concepts and ideas Axon also supports developing applications that start as a

monolith and later evolve into event-driven micro services without significant refactoring as the re-

quirements change.

1.1 Domain-driven design (DDD)

DDD is an important approach when working with complex domains and even

more important in the context of micro services. DDD has been around for

more than 15 years but has received an increased interest due to micro ser-

vices. Concepts like bounded context are important for finding the boundaries

between modules or services from a business perspective, whether in mono-

lithic or micro services based applications. Ubiquitous language is another

important concept — a common language used by developers, businesspeo-

ple, and others involved in a specific bounded context to improve the under-

standing and minimizing the risk of misunderstanding.

Aggregates is a term at a more technical level and describes sets of entities that work together. An

aggregate is composed of one or more entities that must always be consistent — the aggregate is a

transactional consistency boundary. After one or more changes of the entities within an aggregate it

must always end up being consistent when the transaction is committed. Especially in distributed,

eventually consistent systems, the aggregate is an essential concept to ensure correctness on the

longer term.

1.2 Event-Driven Architecture

With the increased usage of micro services, there is also demand for communication between all ser-

vices. Events are a great way to asynchronously distribute information about things happening at a

business level in a service. A customer service can publish information about new customers or that a

customer has moved to a new address. But events are not enough; commands and queries are two

6 / 12

WHITEPAPER

DDD, CQRS and Event Sourcing Explained

AxonIQ

V1.0, 21.09.2021

types of messages that are also essential to achieve a well-designed application built on an ‘event-

driven’ architecture, so this type of architecture should really be called Message- Driven Architecture.

An important part of emitting events is that the publisher doesn’t care if any-

one is listening, if no one is listening to the emitted events the publishing

service should still be able to perform its tasks.

There is a common misunderstanding today that a service that wants some-

thing to be done in another service publishes an event. This makes the re-

sponsibility for the outcome of the business task at hand unclear, and often

creates a need for close monitoring of all individual events in an attempt to

find problems in a business flow. This uncertainty is very close to the pinball

machine architecture style sometimes mentioned in connection with server-

less architecture where it can be hard to understand where data is and what functions are invoked.

If the publisher expects something to happen it should instead asynchronously send a request to an-

other service as a command, and then asynchronously wait for the outcome. This makes it clear that

the service sending the command is responsible for fulfilment of the business task at hand.

One example is an Order fulfilment service that requires a payment for an order before it continues

with the order. The service sends an asynchronous command to a Payment service. When the pay-

ment has been completed the Payment service returns success, or failure if the payment has failed.

The return message is picked up by the Order fulfilment service which now can continue with the order

and request shipment if payment was successful. In this scenario the Order fulfilment service is aware

of a Payment service, which is correct, but the Payment service is not aware of what the payment is

for. If the business now decides to ship to a trusted customer before payment has been received, this

can easily be handled within the Order fulfilment service without touching any other services. In a pure

event-driven approach this change would require changes to at least a couple of services, potentially

to many services. In this scenario, the Payment service has full responsibility of handling the payment,

which may include asking the customer for a new credit card or other information to be able to com-

plete the payment. This process that may take hours or even days if the customer never responds to a

failing payment but that is not a problem. If the payment is never completed, eventually the Payment

service will cancel the payment and return a failure to the requesting service. Events should have a

focus on behaviour and correspond to events at a business level. A service should not just emit events

that data have changed, but describe changes that have a meaning to the business. Instead of a Cus-

tomerChanged event emitted when a customer has moved to a new address, a better event might be

CustomerMoved. Modelling events in this way forces a behavioural focus instead of on structure,

which is beneficial from a DDD perspective and makes it easier to understand what an application is

doing. Events mimicking real world events in the domain often also result in less changes because

domains don’t change that often.

1.3 Events and messages

As already described, there are three major types of messages in an EDA:

 7 / 12

WHITEPAPER

DDD, CQRS and Event Sourcing Explained

AxonIQ

V1.0, 21.09.2021

 An Event represents something that has happened. They are an immutable fact and can therefore

not be changed or deleted.

 A Command represents an action that the sender wants the recipient to perform. The result of the

execution is then returned to the sender. Commands always have exactly one destination.

 A Query represents a request of information the sender wants from one or more recipients. The

requested data is then fetched and returned to the sender.

An important aspect of events is that they are immutable, they represent a fact of something that has

happened and must never be updated or deleted. One option when the need to change or remove

events arises, a new output event stream can be created and used to create new events from the

original immutable stream of events.

1.4 Eventual Consistency

The world is eventually consistent. Transfer of money between two accounts in different banks is a

chain of transfers that eventually will be correctly reflected in both accounts. Unfortunately, strong

consistency has for a long time been the norm in the software community. Everything must be in sync,

sometimes even between services, which has meant the use of different types of complex transaction

protocols which has added a lot of unnecessary complexity to systems. With micro services the soft-

ware community is adopting eventual consistency; changes in one service are transferred to other

services using events, messages or other forms of transports that eventually will be consistent with the

emitting service. But, it is also important to understand that each individual aggregate, wherein deci-

sions are made, must always be consistent. It’s the result of these decisions that are eventually “visi-

ble” to other components. While eventual consistency is an inevitable concept in large-scale distribut-

ed systems, not everything in such system is eventually consistent. Certain decisions within a busi-

ness domain should never be made on inconsistent data. Within an eventually consistent system,

there are several individual components that are internally strictly consistent. The aggregate described

earlier is such a component. These strictly consistent components allow for decisions to be made

based on a reliable and consistent source of information, while the results of those decisions eventual-

ly get updated accordingly in other components.

1.5 CQRS

Command Query Responsibility Segregation (CQRS) is quite a simple concept. It

states that execution of a command should be segregated from queries returning

state. For a software system this means that the part that changes the state is

separated from the part that queries the state.

This has several advantages. A command should affect one aggregate only,

whereas a query often retrieve a larger amount of data or lists of data, which

means we can minimize the effect of a write and optimize the amount of data

retrieved. It’s also possible to use separate types of storage for writes and reads,

8 / 12

WHITEPAPER

DDD, CQRS and Event Sourcing Explained

AxonIQ

V1.0, 21.09.2021

which enables the use of event sourcing. Often reads have to be more performant than writes and with

a separate read model this model can be optimized for reads.

But this separation also means the read model will be updated by things happening on the write side.

Doing this asynchronously means a command may not be reflected in an immediately following read

— the application itself is now eventually consistent which may have to be considered in e.g. a GUI.

1.6 Event sourcing

The ideas of event sourcing are not new, systems were sometimes built

this way in mainframes a long time ago, and databases often work with

event sourcing internally.

In event sourcing the state of a business entity is persisted as a time-

ordered sequence of events.

When the state of the entity changes, a new event is appended to the list

of events. Current state of the entity is created by replaying all the

events. Periodically saving a snapshot of current state is a way to opti-

mize loading when an entity has a large number of events

When using event sourcing within a component or a service you get a complete and reliable audit trail

of that service. Past state can also be reconstructed by replaying all events up to a certain point in

time which can be useful when evaluating the result of bugs in a system. It’s also easy to migrate from

event sourcing to state-storage-with-events-as-side-effect, but not vice versa.

Commonly, a whole system should not be event sourced. Instead, the use of event sourcing should be

a decision made per bounded context, or possibly per aggregate. One important argument for when to

use event sourcing is if state transitions are an important part of the problem space and should be

modelled within the domain.

As already mentioned, modelling using events, a lot of problems in a domain will go away. In indus-

tries like finance, banking or insurance the event sourcing concept is often used. One reason is the

need to keep everything that happens.

Event sourcing events should not be published outside of the bounded context. Within one context all

services speak the same language and can understand and may share all events, publishing to the

outside will create unnecessary dependencies. Instead, create domain events for the published inter-

face of a context. One exception to this is services used for analytics or reporting.

One argument often used for event sourcing is the possibility for replaying events in case an error is

detected. This can look harmless for the service doing the replay — it just replays all of or part of an

event stream from another service and reconstitutes its state. But if this service also emits events, the

replay probably has an effect on these already emitted events which has already been consumed by

services further down the chain. This causes a ripple effect with unforeseeable impact on the whole

system. If an event in practice is handled as a command – an order has been placed — it may result

 9 / 12

WHITEPAPER

DDD, CQRS and Event Sourcing Explained

AxonIQ

V1.0, 21.09.2021

in the order fulfilled twice. A replay must therefore be done with care, deciding if the result of a read

event should be carried out or not.

1.7 Location transparency

One important concept to enable a move from a monolith to micro services is location transparency —

a component should neither be aware of, nor make any assumptions about the location of a compo-

nent it interacts with. This allows for a system to migrate from a structured monolith, where all compo-

nents are deployed as part of the same unit, to a micro services system, with each component de-

ployed individually. All done without any changes to code. Commonly location transparency is done by

using messaging in some form.

1.8 Events and messages

Architecture of a new application or system should be as simple as possible but still allow for a growth

if the need arises. A great start for many systems is a message-driven modular and component based

monolith, event sourced in parts where it’s needed. It probably uses the hexagonal architecture style

internally and leans on the Axon platform to provide most of the infrastructure and enable for a migra-

tion to micro services if the application usage is a success. This style of building a monolith is benefi-

cial even if it’s never split up in micro services. It simplifies maintenance, updates of business logic,

etc.

1.9 Splitting up the architecture

Gradually evolving from a modular monolith to micro services is greatly simplified if the monolith is

built for this from the beginning and is using Axon. Each micro service becomes independently scala-

ble, allowing it to address the non-functional aspects specific to each micro service instance.

10 / 12

WHITEPAPER

DDD, CQRS and Event Sourcing Explained

AxonIQ

V1.0, 21.09.2021

2 Axon

Axon is a framework and a server, both open source, that together builds a platform for event- driven

micro services based systems that provides the foundation and infrastructure needed for successful

design and implementation of systems overcoming the challenges described. In Axon all communica-

tion between components is done using message objects. This gives these components the location

transparency needed to be able to scale and distribute these components when necessary, without

any changes to business logic. It also means that an application only has to be split across deployable

units if the non-functional requirements, such as team size, release cycle, availability requirements,

performance, etc. require so.

2.1 Axon Framework

Axon Framework provides the building blocks for applications based on principles like DDD, CQRS

and event sourcing. Axon Framework has been designed to separate the business logic from infra-

structural concerns and it supports an evolutionary approach by supporting a monolith to evolve into

micro services.

Axon heavily stimulates the separation of logic into smaller components, which communicate with

each other through messages. This significantly reduces the mental burden on developers working

with specific components, letting them focus on the logic correlated to a specific message, instead of

all the infrastructure needed for handling the messages themselves. Location transparency is a key

element in the framework ensuring that a component communicating with another component do not

need to know where that other component is located.

As already mentioned, replaying events can be extremely complicated. Axon Framework provides

granular control to event handlers in terms which events get replayed and which don’t. Also, it is pos-

sible to monitor the progress of the replay procedure.

2.2 Axon Server

Axon Server is a message router and an event store used in a distributed environment.

Axon Server is responsible for routing of messages between all services. It has knowledge about the

different types of messages that are being used and know how to deal with each type; events are sent

from one service to one or many other services, commands are sent to one service to do something,

potentially waiting for and returning result, and queries are sent to one or more services to retrieve

information, always returning a result.

Axon Server also includes a purpose-built event store, used for storing the events created by event

sourced aggregates. When storing events, it also pushes the event to listeners and event processors

that are running, thus removing the need for regular polling and the latency that it brings. One im-

portant feature is the constant performance irrespective of storage size. The number of events can be

extremely high in an event sourced system and a storage that becomes slower as it fills up will lead to

 11 / 12

WHITEPAPER

DDD, CQRS and Event Sourcing Explained

AxonIQ

V1.0, 21.09.2021

significant performance degradation for the whole system. Other important features include the possi-

bility to append multiple events in one transaction, snapshots for storing current state of an aggregate,

thus avoiding the need to read potentially a large number of events to create state. It is also optimized

for recent events. Especially when using snapshots, only the most recent events are read from the

store.

As already described, replaying events should be done with care. Events emitted publicly, or event

handlers contacting some external systems can cause huge and irrecoverable problems. In Axon,

gateways to other systems can be disabled when events are replayed. Axon also provides granular

control over event handlers deciding which components need to get their events replayed.

Axon Server Enterprises comes with the ability to run in a clustered environment. This helps ensure

that any failure of a single node will not impact the availability of the cluster as a whole, giving it avail-

ability guarantees that you may expect from any production-grade system. Axon Server’s multi-context

support allows for separate teams or departments to manage their own virtual environment on a cen-

trally deployed cluster, simplifying operations in enterprise environments.

Are you interested in using Axon or do you have any questions? Then don’t hesitate to contact us via

info@ergonomics.ch.

12 / 12

WHITEPAPER

DDD, CQRS and Event Sourcing Explained

AxonIQ

V1.0, 21.09.2021

3 References and Further Reading

A great and thorough definition of Micro services, written by James Lewis and Martin Fowler back in

2014 when the term was new. https://martinfowler.com/articles/micro services.html

A blog post by Martin Fowler where he writes that he have noticed a pattern where almost all the suc-

cessful micro service stories has started with a monolith.

https://www.martinfowler.com/bliki/MonolithFirst.html

Stefan Tilkov wrote in a blog post shortly after Martin Fowler’s blog post that he is firmly convinced

that when the goal is a micro services architecture, starting with a monolith is usually the wrong thing

to do. https://martinfowler.com/articles/dont-start-monolith.html

Eric Evans described in his keynote at DDD Europe 2019 different kinds of bounded contexts, some

that may be especially useful in an event based system.

https://www.infoq.com/news/2019/06/bounded-context-eric-evans/

Martin Fowler describes event-driven applications and the potential problem with event notification in a

business flow. https://martinfowler.com/articles/201701-event-driven.html

A series of blog posts from 2008 that describes many of the design ideas and patterns that led to mi-

cro services. Note that the blog post are from a time when SOA was popular and before the experi-

ence of using micro services, so some ideas may in some parts have changed. http://bill-

poole.blogspot.com/

A three part story where Vaughn Vernon in detail describes how to implement aggregates using DDD.

https://kalele.io/effective-aggregate-design/

The AxonIQ website has lots of information about the core principles and architectural concepts be-

hind Axon. There is also a reference guide and a quick start guide. https://axoniq.io/

